
Figure 1. Diagram of the MDS architecture emphasizing 
the central role of explicitly represented state knowledge 
and models, goal directed operation, and the separation 
of state determination from control in all feedback loops. 
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Abstract. Not only has the number of launched spacecraft 
per year exploded recently, but spacecraft are also getting 
progressively more complex as instruments become more 
capable and flyby missions give way to remote orbiters, then 
to rovers and other in situ explorers.  To address the software 
issues in this expanding mission set, JPL started the Mission 
Data System (MDS) project – an effort to make engineering 
flight software more straightforward and less prone to error 
through the explicit modeling of spacecraft state.  This paper 
presents how MDS performs mission planning and execution 
in the context of managing explicit spacecraft state. 

1 Introduction 
As instruments become more complex and in situ missions 
become more prevalent, the standard approach to control 
spacecraft with predictable time-tagged command 
sequences falls apart due to growing spacecraft sensitivity 
to its dynamic partially-understood environment.  For 
instance, a Mars rover never knows exactly how much time 
and energy it takes to traverse to a target.  There is no way 
to determine the intervening ground’s looseness prior to 
actually driving over it.  Currently such uncertainties 
condense operations cycles and force operators to work 
odd hours.  For example, MER’s operations cycle forces 
operators to digest the results of one command sequence 
and generate the next one while a rover sleeps during the 
Martian night – a 24.6-hour cycle. 

One of the Mission Data System’s (MDS) underlying 
objectives is to provide a less stressful approach toward 
handling uncertainty.  Instead of commanding a spacecraft 
with predictable command sequences, MDS will control it 
with goals that capture an operator’s intent and drive the 
spacecraft to perform fault-tolerant behaviors that locally 
adapt to environmental uncertainty.  As hinted at in Figure 
1, the MDS architecture addresses uncertainty by explicitly 
representing system state with its certainty and modeling 
how state knowledge evolves over time.   Essentially state 
estimation is kept separate from control in order to force 
the explicit determination of state knowledge with its 
certainty.  By separating estimation and control, MDS both 
facilitates logging state estimates for subsequent retrieval 
and facilitates a principled approach toward control where 
certainty assumptions are made explicit.  These properties 
are required when managing remote spacecraft.  Logs  
 
 

facilitate diagnosing unexpected problems, and certainty 
knowledge is required to facilitate fault-tolerant control in 
the face of partially understood environments.  

Following this feedback-control-centered paradigm 
for reasoning about a system, MDS’s Mission Planning & 
Execution (MPE) subsystem manipulates constraints on 
state variables instead of command sequences.  Where 
other planning, scheduling, and execution architectures 
focus on representing actions one way to plan/schedule 
and another way for execution, the MPE only represents 
constraints on state, and controllers subsequently enforce 
these constraints.  Not only does this approach remove 
consistency issues that derive from two models of each 
action, but it also enables a straightforward way to merge 
activity by simply merging constraints. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

This paper describes MDS’s MPE by first explaining 
the state and constraint approach to representing plans and 
problems.  With this representation, the subsequent four 
sections describe the MPE component architecture and 
how the components combine to implement a simple 
approach to planning, scheduling, execution, and failure 
response.  Finally, the last three sections describe related 
work, future work, and conclude. 



2 Plan & Problem Representation 
At its heart, MDS represents a spacecraft as an interacting 
set of state variables (Dvorak, Rasmussen, and Starbird 
2002).  From a temperature to the data products in a file 
system, each variable denotes an aspect of the spacecraft, 
its environment, or its supporting ground system that has 
some measurable impact on mission objectives.  The 
interactions within this set of variables is described in a 
state effects model.  For instance, Figure 2 illustrates three 
such variables that impact whether or not data gets 
transmitted to ground, where arrows represent the fact that 
one variable affects another.  In this case a transmitter is 
either off or sending data, the temperature is measured in 
degrees Celsius, and the heater can be either on, off, stuck 
on, or stuck off.  Since the transmitter only works when 
warm, the temperature variable affects it.  Similarly, an 
active heater is needed to control the temperature.   
 
 
 
 
 

Given a set of state variables representing a spacecraft, 
the MPE constrains variable values over time intervals to 
control the spacecraft, where a temporally bound constraint 
is called a goal.  For instance, Figure 3 contains an ordered 
pair of goals for controlling the temperature state variable 
to warm to within a specified ten-degree range and then 
stay in that range for ten minutes.  As illustrated, goals are 
connected in a goal network, where timepoints bound each 
goal’s interval and temporal constraints control the 
separation between timepoints.  In this case, the first goal 
can last from 100 up to 900 seconds, and the second must 
last for ten minutes.  In general, timepoints are only 
ordered when explicitly constrained or when the ordering 
affects the evolution of some state variable’s value. 

 
 
 
 
 
 
 

While full goal networks can be manually generated, 
in practice such manual methods are both laborious and 
error prone due to the interactions between state variables.  
For this reason a method for automatically elaborating 
goals was introduced to generate a goal network from a 
small set of user specified constraints.  For instance, Figure 
4 shows tactics for elaborating a constraint to transmit data 
with supporting constraints to have the temperature within 
a prerequisite range during transmission (a) and that the 
heater is on (b&c).  Thus, a constraint to transmit data for 
ten minutes captures an operator’s intent, and elaboration 
automatically fills in the supporting constraints. 

As terminology used to describe elaboration implies, 
elaboration is like precondition achievement planning.  
Just as precondition achievement planning adds actions to 
set up conditions for executing other actions to achieve a 
target situation, elaboration adds goals to enable enforcing 
other goals to ultimately enable enforcing a target goal.  
The differences between the two approaches include the 
fact that the desired goal and its supporting goals are often 
enforced simultaneously.  Also, this constraint-centered 
approach facilitates merging different, but compatible, 
goals that overlap on the same state variable – a feature 
that related action-centered systems in Table 1 currently 
have trouble supporting.   

Finally, where other planning systems reason about 
propositions and metric resources, MDS allows 
mechanisms for creating arbitrary types of state variables.  
For instance, one state variable would capture the 
orientation of a rover using a quaternion, and another 
might capture the state of a memory storage unit with a 
set of file (name, size) tuples.  This generality stems from 
a focus on application programmer interfaces to 
implement arbitrary classes of state variables (Knight, 
Chien, and Rabideau 2001).  As such, MDS replaces a 
focus on textual domain representation languages with a 
focus on C++ functions to reason about state variables 
and merge their goals.  MDS provides base classes for 
goals and state variables, and a domain is implemented by 
creating subclasses and instantiating objects for particular 
types of state variables and goals. 

3 MPE Component Architecture 
The most common framework for developing agent 
architectures within the Artificial Intelligence community 
is based on beliefs, desires, and intentions (Rao&Georgeff 
1995).  Within this framework an agent computes beliefs 
about the world’s state by interpreting observations, 
combines these beliefs with desires that are furnished by 

   

Figure 2. Three interacting state variables 
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Figure 4. Elaboration tactics supporting a transmit data 
constraint on a transmitter state variable 
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 Copy executing task net to proposed network for modification 
 While there are goals to elaborate do 
    Choose a goal G@[S,E] to elaborate (heuristically ordered) 
    Add goal to proposed network 
    Exhaustively choose elaboration tactic M for G  
    Apply M, which possibly generates new goals to elaborate  
        – Backup (and remove goals) if application of M is illegal  
 For each state variable SV (from a heuristic ordering) do 
    For each new goal G@[S,E] on SV (heuristically ordered) do 
        Exhaustively choose how to constrain G’s start timepoint S  
        Exhaustively choose how to constrain G’s end timepoint E  
        Merge G@[S,E] into SV’s timeline – Backup if merge illegal 
    Propagate the expected behavior of SV given the new merges  
        – Backup if the propagation is illegal 
 Replace executing task net with proposed one if it scheduled 

Figure 6. High-level elaboration and scheduling 
algorithm description, where a “backup” regresses 
computation to the last unexhausted choice 

an operator in the form of goals, and computes a set of 
intentions in the form of executable actions that result in 
satisfying the goals.  The main difference among agent 
architectures revolves around how beliefs, desires, and 
intentions are computed, represented, and managed.  
Within the MDS architecture of Figure 1, beliefs are 
computed in state determination components, where each 
state variable has a single state determination component, 
but a single state determination component can estimate 
the state of multiple variables, and these estimates are 
managed by the state knowledge components.  On the 
control side, passing constraints to a state variable’s single 
associated controller – which can similarly service multiple 
state variables – performs intentions.  Finally, desires are 
turned into intentions by the MPE components illustrated 
in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As illustrated, a goal elaboration language (GEL) 
interpreter builds a temporally constrained network of 
commanded goals.  This network is put  in an initElaborate 
message and passed to the GoalsCoordinator, which starts 
elaborators for commanded goals.  These elaborators both 
insert goals into the network tree and start other elaborators 
for supporting goals.  Once the goals are fully elaborated, 
the Scheduler component schedules them for execution, 
which in turn is mediated by the NetworkTimeService and 
XgoalsChecker.  These two components collectively 
determine when to pass a constraint to a controller through 
its associated state variable.  Finally, each goal’s elaborator 
component persists through execution in order to facilitate 
changing a goal’s elaboration, if execution problems arise. 

4 Elaboration & Scheduling 
Although a number of components are involved in 
elaboration and scheduling, they combine to implement the 
algorithm listed in Figure 6.  At the top level this algorithm 

consists of four steps: copy the task network, try to add 
goals to the copy through elaboration, try to schedule the 
added goals in the context of the current goals, and finally 
replace the executing network with the newly changed 
task network.  While the first and last steps are 
straightforward, the middle tasks elaborate and schedule 
using a backtracking search that branches at exhaustive 
choice steps.  For instance, choosing how to elaborate a 
goal may have to be revisited if a supporting goal either 
could not be elaborated or could not be scheduled.  
Essentially, the three backtracking tests determine if a 
choice was infeasible and fixes bad choices by undoing a 
bad choice with subsequent work and making a more 
informed choice to continue the search. 

In general, the MPE framework facilitates building 
numerous different types of planners/schedulers due to its 
focus on components.  By replacing components, the 
MPE system can include other constraint elaboration and 
scheduling approaches with arbitrary amounts of analysis 
over the NetworkTree to inform a search for a new task 
network.  While MDS currently takes the simplest, least 
informed, approach toward elaboration and scheduling, 
the approach is easily changed. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4.1 Elaboration 
To get a better understanding of elaboration, consider 
Figure 7 with its illustration of the initial inter-component 
messages that occur when elaborating an operator’s 
request to transmit data for ten minutes.  The first 
message passes the commanded transmit network to the 
mother elaborator, which starts elaboration by sending a 
ProposerRequest message to the network tree and waiting 
for a response.  At this point the MotherElaborator task 
manages the operator request’s elaboration by creating an 
elaborator for each requested goal and incrementally 
sending messages that tell it to start.  In the case of 
Elaborator1, messages 5, 6, and 12 first add the 
commanded goal to the proposed network and 

Figure 5. MPE system’s component architecture 
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subsequently command the elaboration of supporting 
goals.  While not illustrated due to space reasons, each 
elaborator collects “OK” messages from its children and 
subsequently signals “OK” to its parent, just like the 
illustrated “OK” messages of elaborator2 and elaborator3.   

Ultimately the mother elaborator informs the goals 
coordinator of success or failure depending on whether or 
not all of the mother elaborator’s child elaborators signal 
“OK”.   The goals coordinator either requests to promote 
or cancel the local copy, respectively.  Even after sending a 
promote request, elaborators persist to handle subsequent 
problems that occur when trying to schedule/validate the 
proposed network and execute a validated network.   

While the elaborator for each type of goal can be an 
arbitrary C++ process, the underlying thread model makes 
elaborators collectively execute the WHILE loop in Figure 
6, where each elaborator implements the last three lines in 
the loop.  The goal choice line is defined by how 
elaborator’s send messages to children and await 
responses.  Incrementally sending messages gives 
elaborators full control, and batch sending gives a thread 
scheduler full control.  Finally, requiring that elaborators 
relay messages through the GoalsCoordinator limits what 
they can see and do.   

4.2 Scheduling and Promotion 
While elaboration was spread over multiple components, 
all scheduling is performed by the scheduler component 
shown in Figure 5, which schedules newly added goals 
once elaboration completes.  As the nested FOR loops in 
Figure 6 suggest, scheduling focuses on one state variable 
at a time and one goal at a time for a given state variable.  
For instance, Figure 8 illustrates the scheduling of the 
running example’s goals on the temperature state variable 
timeline upon entering the inner FOR loop and after each 
iteration, where a state variable timeline is an executable 

string of goals (XGoals).  In this case the initial timeline 
contains an “unconstrained” XGoal that gets subsequently 
cut up by merging in the new goals, and the resulting 
timeline is checked for consistency using a propagation 
test.  This test validates a variable’s XGoal in the context 
of its previous XGoal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Figure 7. The first twelve out of twenty inter-component messages as components coordinate to elaborate a 600-second 
transmit data request 6000 seconds after a reference time e, where dashed arrows denote messages relayed through the 
GoalsCoordinator. 
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Figure 8. Scheduling temperature state variable goals, 
where (a) denotes the status prior to scheduling, (b) 
denotes the status after merging in the first goal, and (c) 
denotes the status during the propagation test.   
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In the example, the propagation test passes, because 
the transitioning from unconstrained to transition-temp to 
maintain-temp is feasible.  If elaboration did not add a 
transition-temp goal, the unconstrained to maintain-temp 
transition would fail and cause backtracking within the 
scheduler and possibly back into elaboration.  Finally, 
trying to combine incompatible goals causes an illegal 
merge backtrack.  For instance, replacing the temperature’s 
unconstrained XGoal with an XGoal to stay between 0° 
and 50° Celsius still merges with the example goals, but a 
0° to 5° range causes conflicts.   

Since this elaboration and scheduling are computation 
intensive, they performed on a copy of the executing task 
network, which will replace the executing network once 
scheduling successfully completes, or get discarded if it 
could not complete.  To keep the altered copy consistent 
with the executing network, the scheduler cannot order any 
new timepoint before a fired one even if it fired after 
making the copy.  This ensures that the current constraints 
do not change when replacing the executing task network. 

5 Plan Execution 
As previously mentioned, plan execution in MDS involves 
incrementally changing the constraints imposed on state 
variables.  The NetworkTimeService and XgoalsChecker 
components from Figure 5 combine to facilitate evolving 
the commanded constraints over time.  More precisely, 
these two components combine to provide a real-time 
implementation of the algorithm shown in Figure 9 where 
firing a timepoint grounds its time to now, passes its 
subsequent XGoals to state variable controllers, and alters 
goal failure monitoring.  The two components respectively 
handle temporal constraints and state constraints.  In the 
case of the NetworkTimeService, the NetworkTree sets 
alarms to signal when unfired timepoints are not 
constrained into the future and when they are about to time 
out.  The XgoalsChecker manages a set of timepoints that 
are temporally allowed to fire by progressively testing their 
subsequent XGoals to see when they are ready to start. 
 
 
 
 
 
 
 
 
 

As the algorithm shows, execution mediates the 
evolution of enforced state variable constraints by firing 
timepoints.  At any given moment a set of zero or more 
timepoints can fire.  Each of these timepoints fires when 
either its XGoals can be enforced or its temporal 
constraints force it to fire – possibly leading to a failure 
condition.   When a timepoint fires, its subsequent XGoals 

are enforced and the monitored goals change.  These goal 
monitors detect failures for elaborators to respond to.  
Since goal monitor functions are hand crafted for each 
goal, the actual failure response is locally determined. 

5.1 Constrained Timepoint Firing 
To improve understanding of the execution algorithm and 
its component implementation, consider Figure 10 with 
the result of planning the transmit data example.  In this 
case there is a timeline for each of the three state 
variables, and they collectively refer to five timepoints: 
the first and last pre-existed to refer to a temporal 
reference and the horizon respectively; B and C were 
added as part of the original request; and A arose during 
elaboration.  Given the temporal constraints, the windows 
relative to the reference time appear at the bottom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To simplify the algorithm trace, we first ignore the 
ramifications of goal monitoring, which we return to in 
the next subsection.  The main focus here is to show how 
to efficiently perform timepoint firing by using interrupts 
to let the algorithm sleep when no timepoints need to be 
monitored.  The NetworkTimeService provides alarms to 
facilitate sleeping when all unfired timepoints are 
constrained into the future.  Also, the XgoalsChecker 
component is event-driven by state notifications.  In this 
way the timepoint firing algorithm sleeps while waiting 
for a new timepoint or notification. 

For instance, the NetworkTree starts executing the 
task network by setting up an alarm for 5100, when the 
first timepoint becomes applicable.  Until then, reasoning 
about timepoint firing ceases and the state variables 
remain unconstrained.  At 5100, an alarm triggers the 
NetworkTree to pass the two XGoals related to timpoint 
A to the XgoalsChecker.  Since one XGoal is a transition 

 For each unfired timepoint TP not constrained into the future  do 
    If TP's XGoals can start or TP is about to time out then (fire) 
       Stop monitoring each goal G@[*,TP] 
       For each XGoal XG@[TP,*] do 
          Change imposed constraint on XG's state variable to XG 
       Start monitoring each goal G@[TP,*] 

Figure 9. Timepoint firing algorithm for executing task 
networks 

Figure 10. Executable goal network in support of 
transmitting data for 10 minutes, starting 100 minutes 
after a reference “epoch” time e 
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and the other is a heater mode requirement, they are both 
immediately ready to start.  Thus, A fires, and the 
NetworkTree (1) passes the transition and mode XGoals to 
the temperature and heater mode state variable respectively 
for relay to their controllers and estimators and (2) alerts 
the GoalsCoordinator to start monitoring the two goals 
starting at A.  In addition to enforcing/monitoring new 
constraints, firing A uncovered B, which results in setting a 
second alarm for 6000.  Now reasoning about timepoints 
ceases since none are pending while the transmitter warms. 

When the alarm at 6000 goes off, the NetworkTree 
triggers and detects a timeout.  A timeout immediately fires 
B, and the NetworkTree then passes the XGoals to the state 
variables, changes the goal monitors, and sets an alarm for 
timepoint C at 6600.  At this point the state variables are 
constrained to continually transmit data while reasoning 
about timepoints ceases again.  Finally, at 6600 the alarm 
triggers the NetworkTree to fire timepoint C, which ends 
the transmission by unconstraining the three state variables 
and stopping the monitors.  While “unconstrained” 
intuitively lets a state variable be anything, the controllers 
and estimators are always active, even when a state 
variable is unconstrained.  Thus, a controller will perform a 
prudent behavior.  In the case of the transmitter variable, 
the prudent behavior is to keep it off. 

5.2 Forced Timepoint Firing and Failure Response 
The previous section explicitly avoided discussion about 
responses when goal monitoring detects a failure.  In 
general, an XGoal is a merge of zero or more constituent 
goals that appear in the network.  Whenever an XGoal’s 
constraint is passed down, the GoalsCoordinator either 
starts or continues monitoring that XGoal’s constituents 
against state variable value notifications to both detect and 
respond to failure.  Also, a constituent goal G@[S,E]’s 
monitoring stops when ending timepoint E fires, which 
also stops the last XGoal affected by G. 

For instance, at 5100 in the previous trace timepoint A 
fired to both pass two XGoals to the heater-mode and 
temperature variables and start the GoalsCoordinator’s 
passing state notifications to monitor functions in the two 
starting goals.  The monitor in the transition goal detects 
situations where the temperature will not transition to the 
target range by some deadline.  In general, monitors can 
perform any user-supplied response, but the default iterates 
down from the third of the following six responses: 

1. Reschedule to delay the goal and its supporting goals; 
2. Reschedule to delay the goal that the failed goal 

supports, progressively moving farther up; 
3. Re-elaborate the failed goal and reschedule; 
4. Re-elaborate the goal that the failed goal supports and 

reschedule, progressively moving farther up;  
5. Remove the set of operator-requested constraints that 

resulted in creating the failed goal; and 
6. Remove all operator requests and enter a safe state. 

While the last response corresponds to the typical 
approach to put a spacecraft into a safe mode, iterating 
through the first five facilitate less drastic responses that 
correspond to how the original elaboration/scheduling 
algorithm in Figure 6 regressed its computation upon 
detecting a problem with selections in the exhaustive 
choice steps.  The first two responses corresponded to 
regressing in the scheduling loop, the second two 
corresponded to regressing through the elaboration loop, 
and the fifth choice corresponded to the algorithm’s 
response when it was unable to elaborate and schedule a 
commanded set of constraints. 

Returning to the transmit example, suppose that the 
heater spontaneously switched off at 5400.  Thus, the 
“heater on” goal’s monitor function would detect a 
failure.  In this case, the “heater on” cannot reschedule, 
but the start of its parent “transition temp” goal can be 
delayed to after 5400 – subsequently delaying the start of 
the “heater on” goal.  Thus, a reschedule to move 
timepoint A after 5400 results in a legal task network that 
tries to turn the heater on again. 

While a failure at 5400 can be resolved with a 
reschedule, such is not the case for a failure at 5910 due 
to the temporal constraint between timepoints A and B.  
More precisely, repair efforts first fail to reschedule the 
“heater on” goal due to its simultaneity constraint with the 
“transition temperature” parent, second fail to reschedule 
the “transition temperature” goal due to figure 4(a)’s 
temporal constraint, and third fail to reschedule the 
“transmit data” goal due to the commanded constraint that 
it occur 6000 seconds after epoch.  Also, attempts to 
progressively re-elaborate the “heater on” goal, the 
“transition temperature” goal, and the “transmit data” goal 
fail due to each goal having only one elaboration tactic.  
Thus, the only resolutions are either to completely remove 
the operator’s “transmit data” request or to safe the rover. 

To provide an example of re-elaboration, suppose 
that Figure 11’s elaboration was also available for an 
emergency transmission, lacking goals on temperature, 
but only transmitting at a low bandwidth.  With this extra 
elaboration, the transmit data request can be re-
elaborated, and the resulting task network appears in 
Figure 12, where the data is transmitted at a lower data 
rate in an emergency. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Elaboration tactic to support transmitting data 
during emergencies when temperature controls fail 
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Of course these mechanisms depend on both the 

ability to elaborate/schedule during execution and to 
maintain elaboration information on each distinct operator 
requested set of constraints.  Thus, the elaborator tasks 
introduced in subsection 4.1 persist even after elaborating 
and scheduling goals in order to facilitate re-elaboration 
upon detecting a failure. 

Finally, in addition to responding to problems after a 
goal starts, constituent goal monitoring also deals with 
cases where a goal was not ready to start when its initial 
timepoint fires.  This happens when the timepoint is 
temporally constrained.  For instance, timepoint B fires at 
6000, even if the temperature is only 5° C, and the 
constituent MaintainTemp 10°-20° C goal’s monitor 
function both detects and resolves problem.   

6 Observed MPE Activity 
While the components back in Figure 5 do combine to 
implement the elaboration and execution algorithms in 
Figures 6 and 9, they do so in a manner that facilitates 
letting the algorithms run in parallel – letting execution 
continue during elaboration.  To facilitate this feature, each 
component collects messages from other components in a 
queue and services received messages when activated, 
where MPE component activation occurs in a round robin 
fashion on a single thread of execution that coexists with 
other threads associated with lower level hard real-time 
functions for state estimation and control.  

A number of experiments were developed to test the 
MPE components on both a Rocky7 rover simulation and 
the rover itself, and the simplest just (1) waits five seconds, 
(2) turns the rover 90°, (3) makes it drive forward 3 meters, 
and finally (4) parks it.  Thus, the simplest test has three 
main goals and five timepoints that elaborate to constrain 
54 interacting state variables that model Rocky7.  While 

the ultimate behavior contains four visible activities, the 
test exercises the full system – including the MPE. 

To observe MPE’s behavior in this simple test, we 
measured the amount of wall clock time spent in each 
component to service its message queue during a round 
robin iteration, and graphed the results in Figure 13, 
where actual time is a multiple of the number of cycles 
with a processor dependent ratio.  For instance, this test 
was preformed in simulation on a Pentium based Linux 
workstation that performs 3.06E+09 cycles per second.  
Thus, the longest amount of time spent in any component 
was less than a third of a second during the test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 illustrates the first 40 rounds through the 
MPE components.  These rounds trace MPE activity 
through elaboration, scheduling, and execution up through 
the start of the turn activity.  

Figure 12. Executable goal network in support of 
transmitting data for 10 minutes, starting 100 minutes 
after a reference “epoch” time e 
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Figure 13. Component activity pattern of the MPE during 
elaboration, scheduling, and execution 
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• In the first four rounds the GEL interpreter processes 
command files to pass to the GoalsCoordinator. 

• The GoalsCoordinator becomes active at round 4 as it 
starts elaborators and mediates messages between 
elaborators and the NetworkTree until round eight. 

• The scheduler activates in round eight in order to 
promote the copied network for execution.   

• At round nine the NetworkTree’s activity spikes as it 
promotes the newly scheduled network. 

• The NetworkTimeService and XGoalsChecker spike 
at round ten in order to fire a timepoint that starts a 
five second wait period, where subsequent rounds 
have all components servicing empty message queues. 

• The GoalsCoordinator, NetworkTree, XGoalsChecker, 
and NetworkTimeService activate and interact during 
rounds 35, 36, and 37 in order to orchestrate the 
second timepoint’s firing, where subsequent rounds 
have the rover turning 90°. 

• Finally, subsequent rounds have the GoalsCoordinator 
servicing state update messages to monitor the turn 
goal’s progress. 

In order to simplify explanation, this example only 
showed the MPE performing one task at a time, but 
parallelism is possible.  The message queues facilitate 
parallelism by collecting messages from multiple sources 
and servicing them when a component becomes active.  
For instance, the GoalsCoordinator can mediate messages 
during elaboration while monitoring executing goals 
against state update messages. 

7 Related Work 
As the BDI framework suggests, most agent architectures 
consist of three levels: a planner level to turn desired goals 
into intended activities; an executive level to perform 
intended activities and collect sensory information into a 
believed system state; and a hardware driver layer to 
interface to a robot’s actual sensors and effectors.  While 
the hardware drivers always function in hard real time, the 
point where agent architectures differ revolves around 
layer and interface implementations and resultant real-time 
guarantees (see Table 1).  Systems like CIRCA (Musliner, 
Durfee, and Shin 1993) and EVAR (Schoppers 1995) 
provided real-time guarantees across the board, but only 
applied to relatively inflexible applications for simple 
tasks.  These systems compiled the planner into a control 
system that always provided the next action to achieve 
restricted objectives from the currently perceived state.  
While EVAR used a handcrafted controller for a robot with 
a single objective to rescue an astronaut, CIRCA had an 
offline planner to generate a controller from a given 
objective.  On the other hand, the Remote Agent 
(Muscettola et al. 1998) had an onboard planner to control 
a flexible spacecraft during a short experiment in 
autonomy, and the ASE (Chien et al. 2003) similarly used 

an onboard planner to control a satellite to autonomously 
collect science observations.  CLARAty (Volpe et al. 
2001) provides a rover specific control environment for 
integrating of autonomy research algorithms.  MDS 
provides a unified flight/ground control architecture for 
complex spacecraft with an application to the Mars 
Science Lab (MSL) mission, which involves a rover. 
 

Layer R-T 
Guarantee First  

Year System 
Plan Exec 

Application 

1993 CIRCA Hard Hard PUMA robot 
arm 

1995 EVAR Hard Hard EVA astronaut 
retrieval Sim. 

1998 RAX None Soft DS-1 probe 
(experiment) 

2001 CLARAty Soft Soft Research rovers 
Rocky7 & 8 

2003 ASE Soft Hard EO-1 satellite 
(experiment) 

2004 MDS Soft Hard MSL’s unified 
flight/ground sys 

Table 1. Comparing the per layer real-time performance 
guarantees of planner and executive layers within 
different autonomous agent architectures (when each was 
initially defined). 

While MDS has similar performance guarantees to a 
number of other systems.  There are a number of points 
where the MDS architecture is unique.  First, the focus on 
explicitly constraining explicitly known state information 
derives from a need to keep flight software measurable 
and forces the dissection of the executive layer into goal 
monitors, state estimators, and state controllers.  Second, 
the focus on reasoning about state constraints instead of 
actions facilitates a clean way to merge simultaneous 
activity by merging multiple goals into a single XGoal.  
One criticism of MDS’s constraint focus might involve 
representing complex behaviors that would span multiple 
state variables, like a behavior that would involve camera 
and wheel variables while driving across Mars with 
hazard avoidance.  The MDS planning layer can 
orchestrate such complex behaviors involving multiple 
state variables by linking multiple state variable 
controllers in what is called a delegation pattern where a 
controller accepts constraints directly from others, but that 
is beyond the scope of this paper. 

8 Future Work 
While the MDS architecture currently drives a rover 
around the JPL Marsyard with the infrastructure 
mentioned above, a number of improvements are planned 
to facilitate scaling the MPE up to control the MSL rover 
when it arrives on Mars in 2010.  These improvements 
include adding capabilities, improving performance, and 
improving the human-computer interface.  On the 



 For each state variable SV (from a heuristic ordering) do 
    For each new XGoal XG@[S,E] affecting SV do 
        Exhaustively choose how to constrain XG’s start timepoint S  
        Exhaustively choose how to constrain XG’s end timepoint E 
        Split XGoals on SV if S and/or E are new to SV’s timeline 
    For each new goal G@[S,E] on SV (heuristically ordered) do 
        Exhaustively choose how to constrain G’s start timepoint S  
        Exhaustively choose how to constrain G’s end timepoint E  
        Merge G@[S,E] into SV’s timeline – Backup if merge illegal 
    Propagate the expected behavior of SV given the new merges  
        – Backup if the propagation is illegal 
 Replace executing task net with proposed one if it scheduled 

Figure 16. Extending the scheduling algorithm 
description to include side effect reasoning 

performance side, memory and CPU measurements on the 
Rocky rovers are beginning in parallel with analysis of 
how the actual domain will grow to manage the much more 
capable MSL rover.  On the capability side the most 
pressing needs involve side-effect reasoning and the 
responding to situations when the rover is oversubscribed. 

8.1 Side-Effect Reasoning 
Side-effect reasoning involves modeling how a state 
variable’s constraints affect other variables, which is 
similar to checking side effects on action centered AI 
planners.  For instance, Figure 14 adds an extra state 
variable to the running example to capture the fact that the 
status of available power has an affect on satisfying 
mission objectives.  While the heater’s mode affects the 
current temperature, it also affects available power since an 
active heater consumes power to raise the temperature.  
Similarly, a transmitter consumes power in order to send 
data.  Since elaboration starts with a request on the 
transmitter and only involves state variables that affect the 
transmitter, effects on the power margin are side effects to 
the transmission request. 
 
 
 
 
 
 
 
 

Dealing with side effects starts with extending the 
propagation function over XGoals on a state variable’s 
timeline from just using the previous XGoal to also using 
concurrent XGoals on state variables affecting the current 
state variable.  For instance, Figure 15 illustrates that the 
propagation test on the power margin state variable 
includes references to the transmitter and heater mode state 
variables.  In this case, the heater requires 10 Watts and the 
transmitting data requires 25 Watts. 

In addition to extending the propagation test, 
scheduling has to change in order to reflect that the 
combined side-effects of XGoals depend on the order of 
their timepoints.  Just as before, timepoints that appear on a 
given state variable’s timeline are totally ordered, but now 
both elaboration and side-effects reasoning can put a 
timepoint on a state variable’s timeline.  For instance, 
timepoints A, B, and C appear on Figure 15’s power 
margin timeline because of side effects reasoning.  Due to 
this requirement the scheduling loop in Figure 6 has to be 
extended into the loop that appears in Figure 16, and the 
heuristic ordering in which state variables are visited must 
conform to the partial order defined by the arrows in the 
state effects model.  In the case of Figure 14 there is only 
one such ordering that starts with the heater mode and ends 
with the power margin.  This ordering is required to avoid 

propagating over a particular state variable before 
determining the XGoals of state variables that affect it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Finally, side-effects reasoning complicates failure 
recovery due to problems determining the actual source of 
a failure.  For instance, suppose that the power margin 
dipped to 2 Watts between timepoints B and C.  The 
minimum margin goal monitor detects this problem, but 
there is no direct relationship between this goal and goals 
that consume power.  While other solutions are possible, 
the easiest and safest resolution is to remove all operator 
requests and enter a safe state. 

8.2 Prioritized Requests  
As hinted back in section 2, an operator’s request within 
the MDS framework is a set of state constraints bound by 

  

Figure 14. Four interacting state variables 
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Figure 15. Extending the example to reason about power 
margin (a resource) during propagation in the scheduler. 
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 Delete “pending” operator requests with timed out timepoints 
 For each “pending” operator request REQ in priority order do 
    Try to elaborate/schedule REQ (see Figures 6 and 16) 
    Mark REQ as not “pending” if it scheduled   

Figure 17. Using the elaboration/scheduling algorithm to 
maintain an overflow list of pending goal subnets 

temporally constrained timepoints that gets elaborated and 
then scheduled into the executing goal network.  
Unfortunately, a flight project often runs into a situation 
where its in situ explorer’s time and resource limitations 
preclude satisfying all requests of it – a rover can only visit 
so many rocks and transmit so much data a week.  Thus, 
requests are prioritized and elaborated/scheduled in priority 
order.  Currently, those requests that fail to schedule are 
dropped by the MPE system, but that is soon to change.   

Instead of dropping requests, the MPE will maintain a 
list of “pending” unscheduled requests that it will try to 
schedule upon discovering unexpected resources and time.  
This change involves keeping requests that fail to schedule, 
marking them as “pending”, and then activating Figure 
17’s algorithm upon discovering extra time and resources.  
Such a discovery happens when either another request fails 
or a goal’s monitor function detects under-utilization.  For 
instance, the example power margin goal’s monitor 
function might fire up the algorithm 
 
 
 
 
 
 

 
 
In general, there are two ways for a request to become 

pending: either fail to be initially elaborated and scheduled 
or fail and be removed during execution.  As Figure 17 
suggests, there are also two ways for an operator request to 
leave the pending list: either to timeout and be dropped or 
to be successfully elaborated and scheduled.  The timeout 
option occurs whenever a request contains a timepoint that 
will never schedule due to being temporally constrained to 
fire in the past.  

9 Conclusions 
This paper discussed the autonomy architecture of the 
Mission Data System with an emphasis on how the MPE 
implements the planning layer.  In MDS a spacecraft is 
modeled as an interacting set of state variables, where each 
variable is associated with a single estimator and controller 
within an execution layer.  An MPE plan is represented as 
a consistent network of timepoints connected by temporal 
and state constraints.  While temporal consistency requires 
the existence of a timepoint grounding that satisfies all 
temporal constraints, state consistency holds when no such 
temporal grounding results in simultaneous state variable 
constraints that violate the model of how state variables 
interact.  Given such a plan, the MPE progressively 
grounds timepoints to the current time in order to evolve 
the active set of variable constraints.  These evolving 
constraints control the spacecraft to satisfy both science 
observation and health maintenance objectives.   
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